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Abstract. Self-consistent local density electronic structure calculations have been carried
out on various fcc-based ground-state ordered superstructures of Ni1−xMox alloys spanning
the entire concentration range. Using the tight-binding linear muffin-tin orbital (TB-LMTO)
method, we have calculated the volume-dependent total ground-state energies, and hence the
different equilibrium cohesive properties, as functions of the Mo concentration. Following
the ‘transferability prescription’ of Andersen and co-workers, we have estimated the potential
parameters of the constituent atoms as embedded in the alloy and compared these with
the corresponding charge-self-consistent parameters for the intermetallic compounds. The
ground-state stability profile has been obtained for the first time for this family of Ni–Mo
compounds. Moreover, we have tested the applicability of the cluster expansion method (CEM)
for parametrizing the cohesive energies to estimate the volume-dependent effective cluster
interactions (ECIs) under the octahedron–tetrahedron cluster approximation.

1. Introduction

The electronic structures of ordered as well as substitutionally disordered binary alloys
have been the subject of much theoretical and experimental investigation in recent years
[1, 2]. Such studies have two aims, namely that of (a) designing alloys with the desired
strength and ductility [3] and that of (b) achieving an understanding of the phase stability
and order–disorder transformations in alloys. The latter, in particular, has come to a stage
of maturity, because of the advent of a number of theoretical and computational tools
to describe the configurational thermodynamics in metallic alloys. The basic idea is to
evaluate the ground-state energy of an alloy as a function of its concentration, configuration
and volume, by using some efficient electronic structure total-energy method, such as the
tight-binding linear muffin-tin orbital (TB-LMTO) method [4–6] used here. This method can
be used in conjunction with (a) the cluster expansion method (CEM) [7], (b) the coherent
potential approximation (CPA) and its generalizations [8, 9] or (c) the augmented-space
recursion (ASR) method [10, 11], in order to extract the effective many-body interactions.
Subsequently, the configurational entropy contribution at finite temperature can be calculated
using statistical mechanical methods, such as the cluster variation method (CVM) [12–14]
and the static-concentration-wave (SCW) method [15, 16].

0953-8984/98/388459+17$19.50c© 1998 IOP Publishing Ltd 8459



8460 A Arya et al

Figure 1. The experimental Ni–Mo phase diagram (taken from reference [19]).

We have recently applied the LDA-based TB-LMTO-CEM approach to investigate
the ground-state phase stability of Li–Al alloys under the first- and the second-nearest-
neighbour pair approximation [17, 18]. In the present paper, we have extended our studies
to transition-metal-based (TM-based) intermetallics and determined the various electronic
and cohesive properties and the ground-state stability profile, and also estimated the volume-
dependent (but concentration-independent) effective multi-site interactions. We have chosen
a typical TM-based binary alloy, namely Ni–Mo, which has several equilibrium ordered
intermetallic phases [19] (see figure 1), namely theβ-phase (Ni4Mo), theγ -phase (Ni3Mo)
and theδ-phase (NiMo), and metastable phases such as Ni2Mo (Pt2Mo-type structure),
Ni3Mo (DO22) and Ni2Mo2. This alloy family is particularly interesting from the point of
view of studying the relative stability of thesecompetingfcc-based ordered intermetallic
phases (superstructures). Although the phase transformation behaviour of these alloys has
been extensively studied using several experimental techniques, there has been no attempt
to investigate their electronic and cohesive properties using a first-principles theoretical
approach which can serve as a precursor to studying their ordering behaviour. Here,
we report the results of our LDA electronic structure total-energy calculations for all
of the fcc-based ordered superstructures of the Ni–Mo system (see table 1). For each
structure and composition, we estimate the equilibrium cell volume, bulk modulus, cohesive
energy and compound formation energy, and thereby arrive at the zero-temperature stability
sequence. We have also tested the applicability of the cluster expansion prescription
to obtain the volume-dependent effective multi-site/cluster interactions (ECI), by taking
into consideration those structures which can be stabilized up to the second-nearest-
neighbour pair approximation. Finally, we discuss the electronic structures of these stable
compounds in terms of their DOSs, potential parameters and site- andl-projected partial
charges.
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Table 1. The crystallographic data for various fcc-based ground-state superstructures under the
first- and the second-nearest-neighbour pair interactions. The transformed basis vectors are given
in terms of the vectors of the fcc lattice.

Compositional Space group Wyckoff Multi- Transformed
Structures formulae symbol (No) positions plicity basis

fcc based

A1 A Fm3̄m (225) A (a) 4 a = a{100}
L10 AB P4/mmm (123) A (a) 1 a1 = 1

2a{110}
B (d) 1 a2 = 1

2a{110}
c = a{001}

L11 AB R3̄m (166) A (a) 1 a1 = 1
2a{110}

B (b) 1 a2 = 1
2a{101}

c = a{222}
A2B2 A2B2 I41/amd (141) A (a) 4 a1 = a{010}

B (b) 4 a2 = a{001}
c = a{200}

Pt2Mo A2B Immm (71) A (i) 4 a = 1
2a{110}

B (a) 2 b = a{001}
c = 1

2a{330}
L12 A3B Pm3̄m (221) A (c) 3 a = a{100}

B (a) 1

DO22 A3B I4/mmm (139) A (d) 4 a1 = a{010}
A (b) 2 a2 = a{001}
B (a) 2 c = a{200}

D1a A4B I4/m (87) A(h) 8 a1 = 1
2a{310}

B(a) 2 a2 = a{130}
c = {002}

hcp based

DOa A3B Pmmn (59) B (a) 2

A (b) 2

A (f) 4

2. Computational details

Electronic structure calculations have been performed using the first-principles TB-LMTO
method [4–6], which combines the simplicity of the TB approach with an accuracy
comparable to that of the Korringa–Kohn–Rostoker (KKR) method. This method has
undergone substantial development in the past decade, as can be seen from the recent review
[20]. For close-packed metallic systems, the simplifying atomic sphere approximation
(ASA) [21] has proved to be quite successful. In the case of binary intermetallics, if
there is considerable size difference between the two constituents (as in the Ni–Mo system
under consideration here), it is desirable to ensure that the overlap between the atomic
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spheres of radiis1 and s2, defined as 100(s1 + s2 − d)/s1 [6], remains less than∼30%.
The errors due to the neglect of the interstitial region and truncation of higher partial waves
are minimized by incorporating the so-called ‘combined correction’ terms. According to
Andersen, the ASA with the combined correction should yield reasonably accurate results,
especially for close-packed intermetallics [6] for which the wavelength of the interstitial
solution turns out to be rather large.

The matrix elements of the one-electron Hamiltonian in a nearly orthogonal LMTO
basis can be written as

HRL,R′L′ = CRLδRR′δLL′ +11/2
RL[S0(1− γ S0)−1]RL,R′L′1

1/2
R′L′ (1)

whereR is the site index andL is the angular momentum index(l, m), with l 6 2 (i.e. s,
p and d partial waves on all of the atoms) for the present calculations.S0 is the canonical
structure constant matrix, which depends on the structure of the underlying fcc lattice, but is
independent of the lattice constant and which type of atoms occupy the sites. The properties
of the atoms which occupy the lattice sites are characterized by the parametersC, 1 andγ ,
which depend only on the potentials in the spheres atR and are therefore calledpotential
parameters. The self-consistent potential parameters are generated by solving the scalar-
relativistic radial Schr̈odinger equation at the sphere boundary and its energy derivative at
the reference energiesEν characteristic of the linear method. We have used the von Barth–
Hedin parametrization [23] of the exchange–correlation potential in our local density band
calculations. The hopping integrals in the above Hamiltonian depend on the potential around
each atom and therefore indirectly on the interatomic distances. In the TB-LMTO method,
further simplification is achieved by the use of the so-called screened structure constant
matrix (Sα) and a localized basis set (|χα〉) which is highly sensitive to the different local
chemical rearrangements of the underlying (here fcc) lattice. The screening transformation
can be defined as [4]

|χα〉 = |χ0〉(1+ αSα) whereSα = S0(1− αS0)−1. (2)

It has been extensively used for calculating the ground-state properties of close-packed
metallic systems. The resulting self-consistent potential parameters for s-, p-, d- and f-
electron elements have been tabulated in the literature [5].

For AxB1−x binary alloys obeying Vegard’s law, the volume per atomV 0
alloy in the alloy

is simply the concentration-weighted average of the normal-pressure atomic volumes of the
constituentsV 0

M (M = A or B); i.e.,

xV 0
A + (1− x)V 0

B = V 0
alloy. (3)

The use of normal-pressure values of the constituent’s potential parameters yields a
sufficiently accurate potential and charge density. However, for alloys showing deviation
from Vegard’s law, the potentials of the elements should be calculated at such a pressure
that the concentration-weighted sum of the atomic volumes equals the actual volume per
atom in the alloy. The assumption of the pressure–volume relation yields [6]

(VA − V 0
A )

V 0
A

:
(VB − V 0

B )

V 0
B

= β0
B

β0
A

(4)

whereβ0
M (M = A,B) are the bulk moduli of the pure components. The solution of equation

(3) and equation (4) yields the volumes of the constituents:

VA = β0
BValloy+ (1− x)V 0

B (β
0
A − β0

B)

xV 0
Aβ

0
B + (1− x)V 0

Bβ
0
A

V 0
A

VB = β0
AValloy+ (1− x)V 0

A (β
0
B − β0

A)

xV 0
Aβ

0
B + (1− x)V 0

Bβ
0
A

V 0
B .

(5)
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Table 2. Calculated equilibrium ground-state properties of various ordered intermetallic phases
of the Ni–Mo alloy system. (e/a denotes the electron-to-atom ratio.)

sav
Structures, (sNi , sMo) Bulk modulus Ecoh Eform
fcc based e/a (au) (GPa) (kJ mol−1) (kJ mol−1)

Ni (fcc) 10.0 2.500 256.268 −791.563 0.0

Ni4Mo 9.2 2.636 298.232 −878.942 −25.322
(2.543, 2.952)

Ni3Mo (DOa) 9.0 2.656 299.484 −894.154 −25.021
(2.542, 2.951)

Ni3Mo (L12) 9.0 2.662 248.609 −876.189 −7.055
(2.548, 2.957)

Ni3Mo (DO22) 9.0 2.653 258.678 −893.540 −24.406
(2.539, 2.947)

Ni2Mo 8.67 2.691 258.011 −927.099 −32.109
(2.540, 2.948)

NiMo (L10) 8.0 2.757 91.586 −971.583 −24.879
(2.538, 2.946)

Ni2Mo2 8.0 2.788 208.916 −961.409 −14.705
(2.568, 2.978)

NiMo (L11) 8.0 2.790 334.423 −969.644 −22.940
(2.570, 2.980)

NiMo2 7.33 2.842 242.533 −1008.604 −10.186
(2.555, 2.964)

NiMo3 (L12) 7.0 2.856 225.490 −1050.957 −26.682
(2.539, 2.947)

NiMo3 (DO22) 7.0 2.862 255.108 −1042.724 −18.450
(2.545, 2.953)

Mo (fcc) 6.0 2.959 279.411 −1101.845 0.0

Mo (bcc) 6.0 2.959 283.902 −1140.265 0.0

So the potential parameters in the alloy for the component M (A or B) should be calculated
at the new radiussM = (3VM/4π)1/3. The values of the potential parameters at the radii
appropriate to the alloy phase,sM, can be obtained from the normal-pressure radiis0

M
and the volume derivatives of the potential parameters using the logarithmic interpolation
formulae [6]

C = C0+ dC

d lns
ln(s/s0)

γ = γ 0+ dγ

d lns
ln(s/s0)

1 = 10
[ s
s0

]d ln1/d lns

(p)−1/2 = (p0)−1/2

[
s

s0

]d ln(p)−1/2/d lns

.

(6)

Here(p)−1/2 is a measure of the energy window inside which a linear method is supposed to
yield realistic results. This parameter is usually small in magnitude and is not very important.
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The volume derivatives of the potential parameters used above have been tabulated [5] for
all of the elements.

After extrapolation of the potential parameters to the new radii, one must take into
account the fact that the alloy Wigner–Seitz (WS) radius is different from that of the pure
components, where the WS radii are the same as the sphere radii. This affects only two
of the parameters, namely1 and γ , which should be multiplied by(sM/W)(2l+1), where
W = (3Valloy/4π)1/3 is the alloy WS radius; i.e.,

(3)alloy = (s/W)2l+1(3)pure component where3 = 1, γ. (7)

The prescription (5) for obtaining the sphere radii for the components in an alloy usually
leads to only a small charge transfer between the spheres, and has been successfully used
for a number of intermetallic systems (see, for example, reference [22]). The corresponding
potential parameters obtained using the logarithmic interpolation formulae are found to be in
reasonably good agreement with those obtained from charge-self-consistent calculations for
the ordered alloys, provided that the system does not deviate too much from the Vegard’s-law
criterion. In this work, we have employed the above-mentioned ‘transferability’ prescription
of Andersenet al [6], as can be seen in the following section.

3. Results and discussion

3.1. Stability of ground-state superstructures

The Ni–Mo phase diagram [19] shows three ordered intermetallic phases on the Ni-rich side,
namely theβ-phase (Ni4Mo), the γ -phase (Ni3Mo) and theδ-phase (NiMo). Ni1−xMox
alloys are known to be non-magnetic forx > 0.12, and therefore we have neglected any
magnetic contribution in our present treatment. For our theoretical investigation, we have
considered 12 fcc-basedcoherentstructures† (see table 1), apart from the two equilibrium
structures, namely Mo (bcc) and the Ni3Mo (DOa) structure. The hcp-based Ni3Mo (DOa)
structure is the only hcp-based structure included here, because in the 75:25 composition,
this is the stable structure closely competing with the related fcc-based DO22 structure.
These two structures are generated, respectively, by ABAB. . . and ABCABC. . . stacking
sequences of similar close-packed planes. These 14 structures include all of the stable or
metastable phases in this system.

The crystallographic information for all of the above-mentioned structures is summarized
in table 1. Each of these structures is a superstructure of the parent fcc lattice; i.e., they
are formed because of different chemical arrangements of the constituent atomic species.
But the lattice of the atomic sites remains cubic. We have performed self-consistent (non-
spin-polarized) calculations for global minimization of the total ground-state energy with
respect to the cell volume, keepingc/a = 1. The equilibrium WS radii for the pure
constituents (table 2) are found to be in reasonably good agreement with the experimental
values [24] (sNi = 2.602 au,sMo = 2.928 au), as well as with the KKR [25] (sNi = 2.561 au,
sMo = 2.912 au) and ASW [26] (sNi = 2.589 au,sMo = 3.005 au) calculations. For each
of the ordered compounds, if we choose equal-sized atomic spheres of the constituent
atoms, the charge transfer from Mo to Ni is found to be rather large. However, the
compressibility criterion (mentioned in section 2) yields different atomic sphere radii for
Ni and Mo constituents for each superstructure, which are given in table 2, along with

† These are the ground-state superstructures, under the first- and second-nearest-neighbour approximation, in the
entire concentration range. At 50:50 concentration, we have considered the fcc-based Ni2Mo2 (metastable) and
the L10 and L11 phases, instead of theδ-phase NiMo which is a complex hcp superstructure.
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Table 3. The number of valence electrons (Ql ) inside the atomic (WS) spheres, partitioned
according to the angular momentum, for fcc-based superstructures of the Ni–Mo alloy system.
TheQsph-values are the fractional numbers of electrons inside the Ni and the Mo spheres, as
embedded in the respective compounds. The weighted sum of these sphere charges yields the
total valence charge (QT ) in the compound.

Ni Mo N(EF )
Phase (states
(8) Qsph Qs Qp Qd Qsph Qs Qp Qd (Ryd atom)−1)

Ni 10.0 0.648 0.756 8.596 — — — — 52.692
(fcc)

Ni4Mo 10.015 0.666 0.761 8.588 5.940 0.662 0.831 4.447 23.051

Ni3Mo 10.032 0.683 0.765 8.584 5.918 0.643 0.823 4.452 12.160
(DOa) 10.024 0.674 0.770 8.580— — — —

Ni3Mo 10.017 0.663 0.778 8.576 5.951 0.651 0.790 4.510 37.658
(L12)

Ni3Mo 10.019 0.663 0.776 8.580 5.927 0.649 0.821 4.457 14.360
(DO22) 10.036 0.673 0.775 8.588— — — —

Ni2Mo 10.020 0.674 0.769 8.577 5.961 0.647 0.802 4.512 8.829

NiMo 10.031 0.677 0.794 8.560 5.969 0.650 0.758 4.561 15.391
(L10)

NiMo 9.927 0.673 0.775 8.579 5.973 0.681 0.746 4.546 14.731
(L11)

Ni2Mo2 10.014 0.684 0.766 8.564 5.986 0.651 0.761 4.574 21.429

NiMo2 9.908 0.686 0.769 8.553 5.996 0.665 0.758 4.573 18.262

NiMo3 10.056 0.688 0.826 8.542 5.982 0.654 0.754 4.574 11.786
(L12)

NiMo3 10.029 0.685 0.795 8.549 5.978 0.654 0.768 4.556 15.826
(DO22) — — — — 6.015 0.660 0.740 4.615

Mo — — — — 6.000 0.656 0.762 4.582 14.946
(fcc)

Mo — — — — 6.000 0.644 0.834 4.522 7.353
(bcc)

the corresponding equilibrium WS radius (sav). These sets of values ofsNi andsMo ensure
equally good sphere packing for all of the structures under consideration and at the same time
yield more or less charge-neutralspheres, as can be seen from table 3. The sphere charges
(Qsph) deviate from the corresponding elemental values by60.7% for Ni and61.6% for
Mo. The equilibriumsav-values are found to be slightly higher (systematically) than the
corresponding Vegard’s-law values, although the numbers follow the same increasing trend
with increasing Mo concentration—i.e. with decreasing ratioe/a (figure 2). This small
positive deviation from Vegard’s law is a manifestation of solid-solution effects in Ni–Mo
alloys.

Table 2 also summarizes other calculated cohesive properties, namely bulk moduli,
cohesive energies and formation energies of these superstructures. The bulk moduli (β),
obtained from the second derivative of the total energy with respect to volume, remain more
or less the same, lying within a narrow band (see figure 3) for all of the structures; NiMo
(L10) is the only exception, for which it abruptly drops by a factor of 3. The calculated
values for the pure components are comparable with the corresponding ASW results [26]—
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Figure 2. The average Wigner–Seitz radii of the ordered Ni–Mo compounds plotted as a
function of the Mo concentration. The continuous curve has been drawn to indicate the trend
in equilibrium volume per atom with concentration.

Figure 3. The calculated bulk moduli for various Ni–Mo compounds plotted as a function of
the Mo concentration.



Electronic structure and phase stability of Ni–Mo alloys 8467

Figure 4. The calculated cohesive energies of Ni–Mo compounds plotted as a function of the
valence electron/atom ratio.

namely,βNi(fcc) = 260 GPa,βMo(fcc) = 230 GPa andβMo(bcc) = 250 GPa.
From the ASA total energy [5], we have calculated the cohesive energy (Ecoh) for each

superstructure by subtracting the weighted sum of total atomic energies. Our calculated
Ecoh-values are found to increase with increasing Ni concentration (i.e.e/a increasing),
as can be seen from table 2 and figure 4†. The KKR values for the cohesive energies
of Ni (fcc) and Mo (bcc), as quoted in the literature [25], are respectively−0.413 Ryd
(i.e. −541.995 kJ mol−1) and −0.495 Ryd (i.e.−649.606 kJ mol−1). Our calculated
cohesive energy values (table 2) are found to be systematically overestimated. This is partly
due to the use of the ASA and partly due to the subtle difference between the manners in
which the atomic calculations are performed [25, 17]. Here we have performed the free-
atom calculations semi-relativistically, using the same computer code as was used for our
solid calculations, but with a large cut-offrmax = 30 au. The resulting total free-atom
energies are−3037.080 Ryd for Ni and−8090.228 Ryd for Mo, the corresponding KKR
values being−3011.233 Ryd and−7946.087 respectively [25]. The saving grace is that the
systematic errors in our cohesive energy values are more or less cancelled for close-packed
metallic systems, when we calculate their formation energies as [13]

Efcc
f orm(Ni1−xMox) = Efcc

coh(Ni1−xMox)− (1− x)Efcc
coh(Ni)− xEfcc

coh(Mo). (8)

The energy of formation of a givenfcc-basedcoherent superstructure has been calculated
with respect to the pure fcc-based non-magnetic constituents [13], although fcc Mo is not
the equilibrium structure and fcc Ni is ferromagnetic‡.

† We have followed the thermodynamic convention of quotingEcoh as a negative quantity; this is in conformity
with the definition of compound formation energy which should be negative for a stable structure.
‡ The difference between the total-ground-state-energy values of ferromagnetic and non-magnetic Ni is found to
be only∼3 mRyd from our calculations.
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Figure 5. The calculated energies of formation of Ni–Mo compounds as a function of the Mo
concentration. The solid lines join the most stable structures at the respective compositions.
The dotted parabola is fitted to the heats of formation (crosses) as predicted by Miedema’s
semi-empirical formula.

Our calculatedEform-values as a function of composition have been plotted in figure 5,
and superposed onto these are results of Miedema’s semi-empirical predictions [27]. For the
50:50 composition, the L10 phase has the lowest value ofEform—i.e., the highest stability.
On the Ni-rich side, theEform-values for Ni4Mo (D1a), Ni3Mo (DOa) and Ni2Mo all lie
below the ‘mechanical-mixture line’ (the short-dashed line in figure 5) joining NiMo (L10)
and pure Ni (fcc), signifying that these are the stable/metastable phases for the respective
compositions. ForxMo = 0.25, the values ofEform for the hcp-based DOa and the fcc-
based DO22 structures are found to be very close, although the former is more stable, as is
also confirmed by experiments [28, 29]. A similar argument, extended to the Mo-rich side,
shows NiMo3 (L12) to be the stable structure, while NiMo3 (DO22) is metastable.

3.2. Calculation of ECIs for Ni–Mo alloys

Apart from obtaining the zero-temperature phase stability of different NixMo1−x ordered
superstructures, it is possible to use the self-consistent TB-LMTO ground-state energies, in
conjunction with the CEM, to obtain theconfiguration-independentECIs. The procedure
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Figure 6. The octahedron (bcdefg)–tetrahedron (abcd) cluster approximation for the fcc lattice.

Table 4. The coefficients of the effective (multi-site) interaction (j
(k)
γ ) for the fcc Ni–Mo

alloys under the octahedron–tetrahedron approximation. Successive clustersγ = 0, 1, . . . ,10
are, respectively, as follows: empty (0), point (1), nearest-neighbour (NN) pair (2), next-
nearest-neighbour (NNN) pair (3), equilateral NN triangle (4), 2NN–1NNN isosceles triangle
(5), equilateral tetrahedron (6), 5NN–1NNN irregular tetrahedron (7), 4NN–2NNN square (8),
pyramid (9) and octahedron (10). The unit for calculation ofJγ is kJ mol−1.

Jγ (V )

γ j
(0)
γ j

(1)
γ j

(2)
γ (V = 8.033 cm3 mol−1)

0 100.495 −262.673 16.610−937.402
1 −162.879 8.854 3.628 142.257
2 282.021 −73.954 5.373 34.619
3 −188.718 41.787 −2.327 −3.209
4 −96.604 17.348 −0.772 −7.063
5 68.353 0.073 −0.514 35.761
6 −196.473 50.701 −3.257 0.606
7 258.692 −58.233 3.409 10.908
8 −95.698 27.638 −1.926 2.049
9 66.703 −14.699 0.785 −0.721

10 −33.593 6.900 −0.329 0.631

has been discussed in our earlier work on Li–Al alloys [17, 18]. We have used here the
octahedron–tetrahedroncluster approximation for the fcc lattice (figure 6) which accounts
for pair interactions up to the second-nearest neighbour and gives rise to 11 subclusters
(including the maximal cluster). In order to determine the interactions via the CEM, one
therefore needs a set of 11 fcc-based ordered structures. Accordingly, we have taken the
self-consistent values ofEcoh of only 11 fcc-based structures (9), symmetrically distributed
over the entire concentration range (e.g. A, A3B, A2B, AB, AB2, AB3 and B)†. The
corresponding cluster correlation functions (ξ9γ ) form an 11× 11 matrix which can easily
be inverted to yield the ECIs, given the cohesive energies (from our LDA calculations)
of the ordered superstructures. By expanding these volume-dependent cohesive energies

† We have ignored the D1a structure for the time being, because stability of this structure can be achieved only
if one considers interactions up to at least fourth-nearest neighbours.
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Figure 7. The effective pair interactions for the first- and the second-nearest-neighbour pairs
(J (1)2 andJ (2)2 ), calculated using the CEM, plotted as a function of the volume.

around the equilibrium volumeV0, and retaining terms up to second order, we get the ECIs
as

Jγ (V ) = j (0)γ + j (1)γ V + j (2)γ V 2. (9)

Table 4 summarizes the calculated coefficients for the volume expansion (j (k)γ , k = 0, 1, 2)
of the ECIs, which on substitution in equation (5) yield the values ofJγ (V ) for a typical
value of V . The unexpectedly large magnitude of the values ofJγ (V ) for the irregular
triangle and tetrahedron (γ = 5 and 7, respectively) may be attributed to the fact that these
are rather unphysical subclusters [30]. The effective pair interactions for the first- and the
second-nearest-neighbour pairs (J

(1)
2 andJ (2)2 ) as a function of volume have been plotted in

figure 7. As a cross-check on the reliability of theseJγ -values for Ni–Mo alloys, we have
substituted these ECIs back into the cluster expansion

E9coh(V ) =
∑
γ

Jγ (V )ξ
9
γ (10)

and the fitted cohesive energy values so obtained match (within±3%) those obtained from
our LDA calculations for these superstructures.

3.3. Electronic structure and chemical bonding

In view of the fact that there are neither any band-structure calculations nor any relevant
experimental data which have been reported in the literature on the Ni1−xMox intermetallics,
we shall try to bring out the systematic trends in their electronic properties as obtained from
our self-consistent LDA investigation. Another objective of this section is to discuss and
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Table 5. The potential parameters for the various coherent phases of the Ni–Mo system as
calculated using the charge-self-consistent TB-LMTO method. The corresponding WS radii
values have been taken from table 2.

Potential parameters

Ni Mo
Phase
(φ) s

φ

Ni/s
φ
av C 1 1/

√
p γ s

φ
Mo/s

φ
av C 1 1/

√
p γ

Ni 1.0 −0.307 0.198 5.217 0.427 — — — —
(fcc) 0.792 0.184 6.984 0.114 — — — —

−0.156 0.013 0.788 −0.003 — — — —

Mo — — — — 1.0 −0.165 0.171 4.985 0.437
(fcc) — — — — 0.852 0.166 5.473 0.125

— — — — 0.001 0.031 1.392 0.018

Ni4Mo 0.965 −0.304 0.192 5.229 0.412 1.120 −0.199 0.192 5.068 0.490
(D1a) 0.796 0.166 6.948 0.102 0.824 0.235 5.551 0.176

−0.165 0.011 0.792 −0.002 −0.063 0.054 1.403 0.034

Ni3Mo 0.957 −0.305 0.190 5.191 0.409 1.111 −0.193 0.191 5.090 0.487
(DOa) 0.793 0.161 6.916 0.100 0.831 0.229 5.541 0.172

−0.165 0.011 0.790 −0.002 −0.056 0.052 1.403 0.032

0.957 −0.304 0.191 5.205 0.409 — — — —
0.795 0.162 6.921 0.100 — — — —
−0.164 0.011 0.790 −0.002 — — — —

Ni3Mo 0.957 −0.301 0.191 5.255 0.409 1.111 −0.187 0.192 5.114 0.487
(DO22) 0.803 0.162 6.962 0.100 0.842 0.231 5.537 0.172

−0.163 0.011 0.797 −0.002 −0.049 0.053 1.411 0.032

0.957 −0.298 0.192 5.257 0.409 — — — —
0.807 0.162 6.968 0.100 — — — —
−0.154 0.011 0.798 −0.002 — — — —

Ni2Mo 0.944 −0.299 0.189 5.239 0.403 1.096 −0.185 0.189 5.080 0.480
(Immm) 0.804 0.155 6.946 0.096 0.841 0.221 5.528 0.165

−0.158 0.010 0.797 −0.002 −0.042 0.049 1.410 0.030

NiMo 0.920 −0.295 0.184 5.230 0.393 1.069 −0.174 0.185 5.082 0.468
(L10) 0.806 0.144 6.906 0.089 0.855 0.206 5.504 0.153

−0.151 0.009 0.798 −0.002 −0.023 0.044 1.411 0.026

NiMo2 0.899 −0.306 0.177 5.118 0.383 1.043 −0.181 0.178 4.966 0.456
(Immm) 0.782 0.132 6.791 0.082 0.832 0.187 5.496 0.142

−0.160 0.008 0.783 −0.002 −0.023 0.038 1.382 0.023

NiMo3 0.889 −0.286 0.178 5.233 0.380 1.032 −0.166 0.179 5.067 0.451
(L12) 0.814 0.129 6.880 0.079 0.862 0.184 5.498 0.138

−0.138 0.008 0.800 −0.001 −0.010 0.037 1.412 0.022

test the transferability of the LMTO potential parameters from the pure components to the
alloy according to the prescription of Andersenet al [6] as discussed in section 2.

For the sake of brevity, we have restricted consideration to those structures which
show maximum stability (see section 3.1) for a given composition—namely, Ni4Mo (D1a),
Ni3Mo (DOa), NiMo (L10) and NiMo3 (L12), in addition to Ni3Mo (DO22) which closely
competes with DOa. Table 5 summarizes our charge-self-consistent potential parameters
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Table 6. The potential parameters for various coherent phases of the Ni–Mo system calculated
using the logarithmic interpolation formulae (see the text for details).

Potential parameters

Ni Mo

Phase C 1 1/
√
p γ C 1 1/

√
p γ

Ni4Mo −0.309 0.192 5.269 0.413−0.162 0.193 5.028 0.490
(D1a) 0.795 0.166 6.940 0.103 0.861 0.234 5.486 0.175

−0.176 0.011 0.791−0.002 0.001 0.056 1.405 0.032

Ni3Mo −0.308 0.191 5.277 0.409−0.160 0.192 5.035 0.486
(DOa) 0.797 0.162 6.939 0.100 0.863 0.228 5.486 0.171

−0.175 0.011 0.792−0.002 0.002 0.054 1.408 0.031

Ni3Mo −0.305 0.191 5.301 0.409−0.157 0.193 5.055 0.486
(DO22) 0.804 0.163 6.936 0.100 0.870 0.229 5.486 0.171

−0.172 0.011 0.796−0.002 0.005 0.054 1.414 0.031

Ni2Mo −0.306 0.189 5.292 0.404−0.158 0.190 5.048 0.479
(Immm) 0.801 0.156 6.937 0.096 0.868 0.220 5.486 0.164

−0.173 0.010 0.795−0.002 0.004 0.050 1.412 0.029

NiMo −0.304 0.184 5.308 0.394−0.156 0.185 5.062 0.467
(L10) 0.806 0.145 6.936 0.089 0.872 0.204 5.486 0.152

−0.171 0.009 0.797−0.002 0.006 0.045 1.416 0.026

NiMo2 −0.320 0.177 5.190 0.384−0.173 0.178 4.959 0.456
(Immm) 0.771 0.133 6.950 0.083 0.838 0.187 5.486 0.141

−0.186 0.008 0.778−0.002 −0.009 0.039 1.383 0.022

NiMo3 −0.305 0.178 5.299 0.380−0.157 0.179 5.054 0.451
(L12) 0.803 0.131 6.937 0.080 0.869 0.184 5.486 0.137

−0.172 0.007 0.796−0.001 0.005 0.037 1.414 0.021

(namelyC, 1, 1/
√
p andγ ) obtained using thesNi- andsMo-values given by the Vegard’s-

law values of the WS radii for Ni and Mo (see table 2). Since all of the intermetallic
structures under consideration here are close packed and the deviation from Vegard’s law
is marginal, it is expected that these sets of potential parameters should match with those
obtained via the transferability scheme (table 6). In the latter scheme, we simply take
the calculated values of the potential parameters of the pure elements at the equilibrium
WS radii, and scale them to those corresponding to the alloy WS radii via the logarithmic
interpolation formulae. The logarithmic derivatives of the potential parameters have been
taken from reference [5]. The overall agreement of these potential parameters with the
charge-self-consistent ones in table 5 testifies to the validity of the transferability prescription
used. These near-neutral sphere potential parameters can also be used for the electronic
structure calculations of disordered alloys [22], where lattice relaxation plays a crucial
role. Note that for some structures, such as DOa and DO22, there are two types of
Ni atom in the Ni-rich alloys, whose average values can only be compared with the
corresponding entries of table 6. The minor discrepancies (in mRyd range) can be attributed
to (a) the equilibrium cell volumes deviating from the Vegard’s-law values and (b) the
charge transfer and consequent Madelung potentials in the alloy which cannot be accounted
for in the results obtained using the transferred parameters. However, we have found
that these small discrepancies do not affect the DOSs calculated for the two sets of
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Figure 8. The total densities of states of different stable and metastable structures of Ni–Mo
intermetallics.

potential parameters.
Total DOSs for all the lowest-energy ordered structures (including those for Ni (fcc) and

Mo (fcc)) as calculated via the self-consistent TB-LMTO method are shown in figure 8. The
occupied part of the DOS reveals a multi-peaked structure for almost all of the NixMo1−x
compounds, which clearly show the transition from a Mo-like DOS (with a nearly half-filled
d band having an occupied bandwidth of∼0.5 Ryd) to a Ni-like DOS (with a nearly filled
d band having an occupied bandwidth of∼0.7 Ryd).

The fractionall-decomposed charges (Ql) obtained from the ASA calculations (see
table 3) depend on the sphere radii used and hence cannot be interpreted as the inter-site
charge transfer. However, for a fixed composition, since we have used the same value of
sNi (Mo)/sav around both Ni and Mo sites, it should be possible to estimate theintra-site
promotion of electrons and also the relative trend in the inter-site (more appropriately inter-
sphere) charge transfer. For example, if we compare theQsph-values for Ni3Mo in the
DOa, L12 and DO22 structures, we observe that maximum charge is transferred from Mo
to Ni in the DOa structure, which also turns out to be the most stable one for this 75:25
composition.

Another important quantity is the DOS at the Fermi level,N(EF ), which is used for
estimation of the electronic specific heat and the electron–phonon coupling constant, and
even for determining the vibrational contribution to the entropy at finite temperature. It
is observed (table 3) thatN(EF ) is a minimum for the lowest-energy superstructure at a
particular composition.
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4. Summary

The various cohesive properties and the zero-temperature structure stability of a series of
ordered Ni1−xMox compounds have been obtained from first-principles TB-LMTO electronic
structure calculations. We have considered only fcc-based ground-state superstructures
which are stabilized within the second-nearest-neighbour pair approximation. This ground-
state stability analysis has shown the DOa, L10 and L12 structures to be the most
stable for the 75:25, 50:50 and 25:75 concentrations, respectively. The hcp-based DOa

structure (Eform = −25.021 kJ mol−1) closely competes with the fcc-based DO22 structure
(Eform = −24.406 kJ mol−1), in agreement with experimental observations. Our zero-
temperature stability analysis also predicts Ni2Mo (Pt2Mo-type structure) to have the highest
stability (figure 5). Even though this Ni2Mo phase does not appear in the experimental
phase diagram, there is experimental evidence, based on transmission electron microscopy
[28, 29], which suggests that this phase does form during the quenching of the alloys
containing 8–33% Mo from higher temperatures (ranging between 600 and 800◦C. We are
therefore inclined to believe that a mixture of Ni3Mo and NiMo phases perhaps has lower
free energy than the Ni2Mo phase. The trends in the charge transfers, as well as the values
of the DOS atEF , conform to the stability sequence obtained. The cohesive energies of
11 fcc-based ordered structures have been used in conjunction with the cluster expansion
prescription for obtaining the ECIs as a function of cell volume. The convergence of the
cluster expansion has also been analysed.

The WS radius of Mo is about 12% larger than that of Ni, and the equilibrium values
for the various intermetallic compounds are also found to be somewhat larger than the
corresponding Vegard’s-law values. We have therefore used the prescription of Andersen
et al to estimate the ‘correct’ volumes of the constituent atoms as embedded in particular
intermetallic compounds, and hence calculated the new renormalized potential parameters
via the logarithmic interpolation formulae, involving volume derivatives. These ‘transferred’
potential parameters match the corresponding charge-self-consistent results reasonably well,
thereby attesting to the validity of the prescription used. In fact, these potential parameters
can be used immediately for the corresponding disordered Ni–Mo alloys, which undergo
lattice relaxation due to appreciable size difference between Ni and Mo atoms.

Acknowledgments

This work forms a part of the PhD project, carried out at the Indian Institute of Technology,
Mumbai, of one of the authors (AA). The authors are grateful to Professor A Mookerjee
for many helpful discussions.

References

[1] Pettifor D G and Cottrell A H 1992 Electron Theory in Alloy Design(London: The Institute of Materials)
[2] Ducastelle F 1991Order and Phase Stability in Alloys(New York: North-Holland)
[3] Paxton A T and Pettifor D G 1992Scr. Metall.26 529
[4] Andersen O K and Jepsen O 1984Phys. Rev. Lett.53 2571
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